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A NON-DISSIPATIVE STAGGERED FOURTH-ORDER ACCURATE EXPLICIT FINITE

DIFFERENCE SCHEME FOR THE TIME-DOMAIN MAXWELL'S EQUATIONS*

AMIR YEFET t AND PETER G. PETROPOULOS

Abstract. We consider a divergence-free non-dissipative fourth-order explicit staggered finite difference

scheme for the hyperbolic Maxwell's equations. Special one-sided difference operators are derived in order to

implement the scheme near metal boundaries and dielectric interfaces. Numerical results show the scheme

is long-time stable, and is fourth-order convergent over complex domains that include dielectric interfaces

and perfectly conducting surfaces. We also examine the scheme's behavior near metal surfaces that are not

alligned with the grid axes, and compare its accuracy to that obtained by the Yee scheme.

Key words. Maxwell's equations, staggered schemes, finite differences, FD-TD scheme, explicit fourth-

order schemes.

Subject classification. Applied Mathematics

1. Introduction. Recent engineering advances have resulted in ultra-wideband electromagnetic sources

that find application in pulsed radar devices, ground-penetrating imaging systems, non-destructive evaluation

of concrete structures, electronic on-chip interconnects, and novel communication systems. The need to

simulate such problems requires fast and accurate solvers of the time-domain Maxwell's equations in complex

open/closed domains filled with heterogeneous dielectrics in which metals may be embedded. A mini-review

of how the Computational Electromagneties (CEM) state of the art impacts such technologies can be found

in [13]. For about a decade, "_e's Finite-Difference Time-Domain (FD-TD) algorithm [1] has provided the

best [15] second-order accurate non-dissipative direct solution of the time-domain Maxwell's equations on a

staggered grid. The numerical error is controlled solely by the mesh size, and the algorithm is particularly

easy to implement in tt_e presence of heterogeneous dielectrics and metal boundaries. As with all finite

difference schemes, the algorithm is inherently dispersive and anisotropic [4] and, for large-scale problems or

for problems requiring long-time integration of Maxwell's equations, errors from dispersion and anisotropy

are significant unless the spatial discretization is extremelly small [10]. This leads to prohibitive memory

requirements and high computational cost when addressing realistic problems. For some time now, workers

in CEM have realized the promise of high-order finite difference schemes. The question of staggered vs.

collocated high-order schemes has been studied in [5] where it was shown that staggering is more efficient.

At the same time a staggered high-order method can be constructed by altering a code that implements

the staggered second-order accurate FD-TD algorithm. However, the extended spatial stencil of high-order

methods has inhibited their wide acceptance as it does not allow for easy application of boundary conditions

(absorbing, metal) and modeling of dielectric interfaces. The issue of implementing an absorbing layer in

a promising staggered scheme that is fourth-order accurate in space and second-order accurate in time [12]

has been addressed in [14]. It remained though that this particular high-order scheme (desirable due to its

similarities to the Yee scheme) was only second-order convergent and slightly more accurate than FD-TD
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whenusedto solveproblemswithmetalboundariesand/ordielectricinterfaces.In thispaperwerevisitthe
explicitnon-dissipativestaggeredschemepresentedill [12]inorderto addresstheremainingobjectionsto
its use.Wedemonstratethat it. isdivergence-free,andproposea seriesof numericalboundaryconditions,
involvingone-sideddifferentiationandextrapolation,toimplementmetalboundariesanddielectricinterfaces.
Thetreatmentofdielectricinterfaceshereinisdifferent,fromthatin [11]whereasimplepointwisespecification
ofdielectricpropertieswasused;weshowin ourNumericalResultssectionthatsuchanapproachdegrades
theglobalconvergencerateof thescheineto secondorder.Also,thetreatmentof metalboundariesherein
is differentthanthat usedin [10]wherethemethodofimageswasapplicabledueto theinfiniteextendof
thoseboundariesin thenumericaltest.performedthere.Asshownin ourNumericalResultssection,these
newnumericalboundaryconditionsgivealmostthesameresultsasthecompact-implicitTy(2,4)scheme
[2],and(moreimportantly)preservethefourth-orderaccuracyofthescheme.Togetherwiththeresultson
absorbinglayers[14],thepresent,papershouldopenthewaytowardsa generalacceptanceof thisscheme,
whichisanextensionofYee'salgorithmto fourth-orderaccuracy.Wenowbrieflyoutlinetheremainderof
ourpaper.Section2describesthesyst.emof partialdifferentialequationsfor whichwewill presentthenew
boundarytreatmentfor thefourth-orderschemeconsideredherein.In Section3 wepresentthe detailsof
theschemeandits numericalstabilityandaccuracyproperties;aderivationof thedivergence-freeproperty
of theschemeis alsogiven.ExtensivenumericaltestsaregiveninSection4; closedandopenproblemsare
consideredandtheactualconvergencerateof acodebasedontheworkhereinisdetermined.In Section5,
wegivea computationalcostcomparisonbetweenourapproachandthoseof [1]and[2]. Section6 closes
thepaperwitha shortdiscussion,conclusionsdrawnfromthenumericalexperiments,anda descriptionof
filtureworkrequiredto turnthisschemeintoanengineeringtool.

2. Preliminaries. TheMaxwellequationsin anisotropicn0n:dispersivemediumare:
OB

VxE+_=0 (Faraday'sLaw),
(2.1)

OD

-VxH+_=0 (Ampere'sLaw),

coupled with Gauss's law

V.B=0

V.D=p.

To simplify the notation we shall consider the two dimensional case, with the only sources for the problem

being incident waves. These waves will be scattered after they encounter an obstacle. Furthermore, in free

space, e and p are constants. The extension of the system of equations to three space dimensions, and the

inclusion of sources and variM)le coefficients is straightforward. In two dimensions, the system (2.1) now

decouples into two independent sets of equations. We shall consider the Transverse Magnetic (TM) set of

equations where the electric field is a scalar while the magnetic field is a two-dimensional vector. Letting

r = ct = t/vzfi-g and Z = V/-_-_, where e and p are the permittivity and permeability coefficients in free space,

and c is the speed of light, the TM equations are:

OE= Z ( OHu OH=o--;-= N )



(2.2)

(3.1)

OHx 10E=

Or Z Oy

OHv _ 10E:
Or Z Ox

3. The Scheme. The Yee scheme applied to (2.3) is

,7+] Z__T n+l/2 7 Z-_T ,_ H.+l/2

E_,_,j E:",i,j + .... _,._.._.,_,j= ZAxS.,,Hv,,o -

Hn+l/2 = nn_l/2 1 Ar
x,i,j--1/2 x,i,j--1/2 Z _y '_vEzn'i'j-l/2

H,+l/2 = rr,_l/2 1 AT- ,1
y,i--t/2,j "*y,i--1/2,j + -Z _xSxE:,i-l/2,j ,

where

Yee:

(3.2)

5xUi, j = L Ti+I/2, j ---U-i_l/2, j

5yUi, j = Ui,j+l/2 - gi,j+l/2.

U is evaluated at the appropriate time and space location. In order to improve tile accuracy of this scheme we

replace ttle difference operators (3.2) by the following fourth-order accurate stencil for tile spatial derivatives,

e.g., -0-_u"°u"

explicit (2,4) :

OU 1

(3.3) Oy i,j+l/2 -- 24Ay (Ui,j-1 - 27Ui,j + 27[7i,j+1 - 55,j+2)

Hereafter we shall refer to (3.2) as tile 5%e scheme and to (3.3) as the explicit(2,4) sc!_eme. To complete the

fourth-order scheme at the first and last points of a bounded spatial domain we use fourth- and fifth-order

accurate one sided appropximations to the derivative. We note that this is used only in order to glohally

approximate the derivative. No physical boundary conditions are inchlded at this stage. These one-sided

approximations are as follows:

OU 1
- (-22Ui,o + 17Ui,1 + 9Ui,2 - 5Ui,3 + U,,4)

Oy i,1/2 24Ay

OU 1
.r

Oy i,1 24Ag (-23UiA/2 + 215_,3/2 + 3Ui,5/2 Ui,7/2)

OU 1
r

(23Ui,N-W2 - 21Ui,N-3/2 -- 3[._ N-_/2 + Ui,N-7/2)
Oy 24Ay

OU 1
- (22Ui,N -- 17Ui,N-I -- 9Ui,N-2 + 5Ui,N-3 -- Ui,N-4)

Oy i,N-1/2 24Ay

We next. define

(3.4)

-23 21 3 -1 0

1 -27 27 -1 0

0 1 -27 27 -1 0

0 1 -27 27 -I

0 1 -3 -21 23



1

(3.5) AE = _-_

-22 17 9 -5 1

1 -27 27 -1

0 1 -27 27 -1

0 1 -27 27

0 -1 5 -9 -17

0

0

0

-1

22

so the matrix form of the approximations to the derivative at tile midl)oint between grid points, and at tile

grid points is respectively:

]
0 Ua/2 [:1

N " =24 yAE . ,
UN - 1

L+N- 1/2 [_

0 U2 1 b3/2

_y -- -- _4_yy AH

-1 UN-1/2

With these definitions, the matrix form of the discrete TM equations is:

A_ At
[EZi,j] n+l = [EZi,j] n + _AH[HYI+I/z,j] n+l/2

[HX m+l/2At
-- _yy!. ij+l/2J n

n+t/2 - n--l/2 ,_.a,,
[HXi,j+I/2] = [HX i,j+a/2] _y [EZi,j]" A_

[HYi+,/2,j] n+1/2 = [HI%+,/2,j] "-_/2 - _AE[EZij] n.

Note, the staggering in time and space results in a scheme that is second-order accurate in time and fourth-

order accurate in space.

3.1. Divergence of Computed Fields. \_,> now demonstrate that the explicit (2,41 scheme is divergence-

free for TM waves, that is

= 0 , =

-_Tdzv(pH,, pHu) = O]

We note that p may be a function of the spatial variables and introduce the relations:

[(pHX)i,j+l/2] n+l/2 X n-l�2 At ,, t
= [(pH. )i,j+,/2] - -_y[EZi,j] A E



[(itH]')i+ l/2,j ]n+1/2 = [(itH'l')i+ l/2,j] n-l /2 - _AE[EZij] n.

Multiplying the first equation above by 1/Ax and AE, the second equation by 1/Ay and A_, and adding

we get

('_x AE[(pHX)I,j+I/2] + _y [(/JHY)i+I/20]A_) n+l --

(,_xAn[(pHX)i,j+l/2] + 1 t n• _y[(t'HY)I+I/2J]AE) .

Hence, if ttw field is numerically divergence-free initially it will remain so ever after. If the p is discontinous

titan the derivation of the property differs. In that case we segment the domain into subdomains, and on

tim boundaries of the dielectric we use a fourth-order extension of the approach developed for second-order

schemes in [6] and [7]. The details of the fourth-order extension to handle dielectric interfaces is given in

Section 4.

3.2. Time Step. For each of the methods described above one must choose a time step for the numerical

integration. This time step is based on two considerations: stability and accuracy. Since all the sct_emes

have stability linfits, this places an upper bound on the usable time step.

The amplification factor is given by:

1
i 1.2)2 _ 1ateapyroa = 1 + _Z2 4- (1 -4- 2" "

[ 1 l ] 1/2z = AAt. A is an eigenvalue of the Fourier transform of the spatial approximation. Let D = _ +
Then

[A_plicitl = 1( [27sin (°)(._._/)2-8iT/('_)]2 "1- [278in(-_)( ,:._y)2--8iTL(32_)]2 )1/2 ----- -7D3

Since we wish to obtain higher order accuracy it is also necessary to limit the time-step by accuracy

requirements. We do not want the accuracy of the scheme to be determined by the time integration. Hence,

the temporal error should be equal to or less than the spatial error. For the Yec scheme one should choose

the time step close to the stability limit. For the explicit(2,4) scheme the time step chosen depends on

the accuracy desired. As the mesh is refined the spatial error decreases as of a fourth order scheme and

so decreases faster than the temporal error. Thus, the time step should depend on (_x) 2. If the error

requirements are too severe then this is inefficient and the leapfrog in time should be replaced by a fourth

order Runge-Kutta method. However, for the experiments in this paper we shall use the same leapfrog

method for both schemes.

3.3. Spatial Accuracy. There are several ways of constructing fourth order methods. We can use

either a staggered mesh or locate all the variables at the same mesh point. In addition we can either use a

five point stencil in each direction to approximate the first derivative or else use a three point stencil with

an implicit matrix inversion. Define the following operators:

h



(Us_a/2-uj+3/2)+27(ui+l/2-uj_t[.,)
• D 1 _ : 24 h

(Dett).i+l+!D4u)j-_ ll• 24 + T_'2(D4tt)J = ltJ+lc'2--ttJ-l[2tl_

We define the truncation error as T = Du - d. = rh 4. By a Taylor series expansion we get

3
• rl = _ '-_ .0046875

17 .00295• 72 = 5-7-ff6.,-_

Kreiss and Oliger [3] give a simple analysis, for semi-discrete approximations, to calculate the number

of points per wavelength needed to resolve a wave with speed a and given accuracy (. Let _ be the wave

number (u(x,t) = e_-"t). We consider the solution over q periods so that t = 2_q. They find that the
tal_/

number of points per wavelenth, M, needed for accuracy e is given by

where p is the order of the scheme.

If we choose e = .01, one percent error, then we get

• ill 0 _ 32.15ql/2

• ]1[1 ,._ 8.23ql/4

• M2 _ 7.33q l/a

As seen from the formulas of Kreiss and Oliger the benefits of a fourth order method, compared with a second

order method, improve as one demands higher accuracy (e.g. 0.1%) and with longer times of integration.

Wc conclude that either staggering or a compact implicit method gives substantial improvement over the

simplest fourth order accurate method. Combining staggering with an implicit method gives a little more

improvement (see also [5]). We stress that staggering also helps in the imposition of the boundary conditions.

In addition using the Yee placement of the variables simplifies the conversion of an existing code to fourth

order accuracy.

If one assumes a uniform grid-spacing, i.e, .:_kx = A 9 = h, and defines the number of points per wavelength

to be N = _ then the numerical wave speed c* can be written as:

N [.._,rrcos(0) rrsin(0) ]1/2

[.... ,'r cos(0), 3rr cos(0) ]2 =:=
c* N [ztsln(--------_--) sin( N )j .....explicit = _(

[ .... 7rsin(0), . , 37r cos(0) ,] 2

+ [z, smt----_--) - )1/_

Shown in Fig. 3.1 are the polar diagrams of the numerical phase speed for N = 1, 2, 4, 8 and 16 for the two

schemes. A comparison of the numerical phase speed for N = 20 is given in Fig. 3.2. Tiie numerical ptiase

speed in the two schemes experiences a phase lag. The lag decreases gs N increases. The lag decreases for

the explicit scheme. In other words, for a given grid-spacing, the error (1 - c*) for high frequency modes is

greater than that for low frequency modes. For a fixed N, the error using Yee's scheme is greater than The

explicit. The two figures also demonstrate the anisotropy inherent in the discretizations.

One observes that the error is the greatest along the axes (0 = 0, 77/2, 7r and 37r/2) and the least along the

diagonals (0 = zr/4,3rr/4, 57r/4 and 77r/4). An important quantity to measure is the isotropy error defined

as the difference of the maximum and the minimum values of the numerical phase speed. For N=20, as

shown in Fig. 3.2 the isotropy errors are 0.2% for the _e scheme and 0.0034% in for the explicit scheme.



Expandingc* one obtains the error:

, rr2 • 1 11 -- eye _ = 7,(g + _ cos(40))

3_-4

1 -- c_.Tvtici t -- 320N 4(5 + 3cos(40))

The above equation shows that the leading dispersive errors in Yee's scheme is inversely proportional to N-"

and in the explicit scheme is inversely proportional to N 4. This, of course, is just a reflection that Yee's

scheme is second order accurate in space while the explicit, scheme is fourth order accurate in space. It also

shows that the leading dispersive error is a fimction of the wave propagation direction 0 on each grid.
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3.4. Numerical Errors of Spatial and Time Discretization. We have discussed spatial and time

errors individually in the previous sections. In this section we will investigate the numerical errors from the



combineddiscretization.Theseerrorscanbe determined from the eigenvahms of tile amplification matrix.

In Fig. a.a the curves labeled 'exact' are the normalized phase shift using the exact time integration. Ttle

difference between these curves and the value 1 is tile spatial phase error, which can have either a phase lag

or a phase lead. The other curves are the normalized phase shift using the staggered leapfrog (with Yee and

1 For the Yee scheme tile difference between each curve and the exact curvethe explicit(2,4)) with CFL = _.

is an additional phase error due to time discretization. Leapfrog has a larger error and a phase lead and so

moves the curve away from 1. Except for a very small contribution due to the nonlinear relation between

and A, the time discretization does not reduce tt,e isotropy error introduced by the spatial discretization.

LF-E_m

# t I t t _

0 988 I _ I I _ t

0 980 l[ 2t " 3_ 41 _5 .... 5r --

FIC. 3.3. Comparison of phase shi#s for complete discretization.

4. Computational Results. In this section we compare three different schemes: the standard ]_e

scheme, the explicit(2,4) scheme as extended herein, and tile Ty(2,4) [2] scheme. All schemes are advanced

in time by the leapfrog method. For all computations we choose Z = 1. For the numerical examples that are

posed in an open domain we use a PML method in the far field. In all cases the error is measured against

the exact E_ in the La norm. All numerical examples herein test the accuracy and stability of the one-sided

differencing and extrapolation operators introduced in Section 2 and in the present Section.

We first consider a test case with the following initial and boundary conditions:

E_ = sin(3r_x) sin(4rry)
5_rAt

H_ = (3/5) cos(3_rx) sin(4rry) sin(------_--)

.5rrAt

H, = -(4/5) sin(3rrx) cos(4rry) sin(--_-) _

The exact solution in this case is:

E: = sin(3rrx) sin(4rry) cos(57rt)

For the three schemes we choose uniform grid spacing. For the Yee, the explicit(2,4) and the Ty(2,4) schemes

we take: h = Ax = Ay = 1/20, 1/40, 1/80. For tile Yce scheme we set. At = 2h/3, while for the explicit(2,4)

and Ty(2,4) schemes we set At = h2. Figures 4.1a-4.1c show the actual logarithmic errors as a function of

time. Figure 4.1d shows the convergence rate of the Le spatial error in the maximum norm over the time

interval [0, 10]. The slope of the line for the Yee scheme conve}ges to 2, and the slope of the lines for both

tile explicit(2,4) and Ty(2A) schemes converge to 4. This can also be seen in Table 4.1.
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TABLE 4.1

The maximal errors in L2 norm for each mesh size

scheme h At Max(llerrorllz_) rate

0<t<10

1 _ 0.014explicit(2, 4) 2-6 40---6

explicit(2.4) 1 1 1.43 x 10 -4 6.60
• 40 1600

explicit(2, 4) 1-- 1 4.76 x 10 -6 4.9152, 80 3200

1 _ 0.0224Ty(2, 4) 2-_ 40--O

1 a 7.07 x 10 -_ 8.306Ty(2, 4) 4-"6 _44o

1 2.12 x 10 -6 5.0589Ty(2, 4) 8-6 3440

]'ee 1-- _ 0.189
20 35

]'ee _ 1-- 0.0475 1.99
40 70

1 _ 0.0118 2.003
] "e e s--6 14--6

We next consider the simplest mode of propagation in a rectangular cross section wave guide. We take



the walls to be perfect conductors. "_,\' take the following boundary and initial conditions:

E: (x, y, 0) = sin(37rz,) sin(47cy)
At 3 57rAt

Hy(x,y,-_-) = -gsin(37rx _- )sin(4_y)

At 4 57rAt

- _ cos(3_rx - sin(47ry)H_(x,y,-_-) = -_ )

E: (0, y, t) = - sin(57rt) sin(47ry)

E: (1, y, t) = sin(37r - 5rrt) sin(4_y)

E:(x,0,t) = o

E: (x, 1, t) = 0

The solution is then:

E: (x, y, t) = sin(37rx - 57rt)sin(4rry).

For tile three schemes we choose uniform grid spacing. For the 5_e, tile explMt(2,4), and tile Ty(2,4) schemes

we again take: h = Ax = Ay = 1/20, 1/40, 1/80. The CFL numbers are chosen as before. In the figure 4.2(1

we draw the error as a function of the mesh size. For this test problem too tile slope for the Yec scheme

converges to 2 while that for the explicit(2,4) converges to 4. In table 4.2 we present the errors in L.) norm

for the 5_e and the explMt(2,4) scheme. In both cases the errors are almost linear in time. However as the

mesh is refined the Yee scheme yields second order accuracy while the explicit(2,4) yields between fourth

and fifth order accuracy.
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FIG. 4.2A. toglo(HerrorllL_.) For the Yee scheme. FIC. 4.2u. log_o(lIerrorllL:) For the explicit(2,4)

scheme.
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TABLE 4.2

The maximal errors in L2 norm.

scheme h At Max(llerr_llL=)

0<t<10

rate

explicit(2, 4) ± _-- 0.01420 400

_ 1.9316 × 10 -4 6.2explicit(2, 4) 4-6 16oo

1 1 6.48 × 10 -6 4.896explicit(2, 4) s-6 3200

Ty(2, 4) ± JL 0.024220 400

Ty(2, 4) & ] 7.9304 × 10 -_ 8.15
40 1440

Ty(2, 4) ± _ 2.329 x 10 -6 5.089
80 3440

]'ee _ _ 0.1889
20 30

] ] 0.0476 1.9885] "ec 4-6 6-6

]'ee _ _ 0.0119 2.0032
80 120

We next consider the treatment of a domain which contains air and a lossless dielectric with a relative

permittivity of (_ as shown in Figure 4.3.

-1 112.112

FIG. 4.3. The computational domain

1]



Since E_ is continuous while its second derivatives are discontinuous we use tile following fourth-order

explicit interpolation t,o implement the discontinuous dielectric properties in tile explicit(2,4) scheme. Define

5 15 -5 1 0 0

-1 9 9 -1 0

0 -1 9 9 -1 01

(4.1) Ai,,t =

Then

0 -1 9 9 -1

0 1 -5 15 5

Cl ] (1/2

(-2 I (=3/2

. I = Aim

fp-2 ]
_p--I Ep--l/2

Ill two dimensions this is replaced by:

[_:i.j] = -_1 (ADd[_i+l/2.j] -I- [{i,j+l/2]Aint)

An exact solution in this case is:For the Yee scheme we take Einterface _ 2 "

91T _ " 1

= 2cos(_-X)cos(_Jt)sin(NvY ) IXI_<_ 0_<I'_<1
" 1 -E. exp(_33)exp(-'2_3 31Xl)cos(_'t)sin(t(vY ) IXl_>_ 0_<I <1

-v_-e, sin(_-X)sin(wt)sin(I(vl') IXl ___½ 0 _< Y _< 1
= - X_> 7 0<]'<1H v exp(_3-_) exp(-2_3-_3 X ) sin(a.,t)sin(t(vl') _

exp(_3--_) exp(2_3-@3X ) sin(aJt) sin(Kvl" ) X _< 7 0 _< I _ _< 1

1

-v/_ + 3_ cos(_X) sinist ) cos(Ky_ _) IXl _< y 0 < Y < 1

Hz= _exp(@)exp(-2_33[Xl)sin(wt)c°s(t(u]')2 [Xt>½- 0<Y<I_ _

where K v -_ _ and w = 4_= • V _-_ _. Here we choose el = 1 and e,. = 2,4. We use the same mesh sizes

as before. In Figures 4.4 and 4.5 we draw the errors as a function of the mesh size for various e2.

-1

-1 s

-.-2

!_s

_,5

.,.,,_o,,<2.,,>I j -,

F
i

w

_2s

1{

_B

=: [

FIG. 4.4. The maximal errors in L2 norm as a

function of the mesh size with e2 = 2.

FIG. 4.5. The maximal errors in L2 norm as a

function of the mesh size with e2 = 4.
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Althoughwegetonlysecondorderaccuracyfor theexplicit(2,4)schemewestill getmuchbetterresults

TABLE 4.3

The maximal errors in L2 norm with e2 = 2.

scheme h At

1 1
explicit(2, 4) 2-'6 40-'-6

1 1
explicit(2, 4) 40 1600

1 1
explicit(2, 4) 8o 320o

1 1
Ty(2, 4) 2-6 40--6

Ty(2,4) _ 11600

Ty(2, 4) _ '6400

1 l) "co-- 2-6 3-6
1 1

) "e e 4-6 6-6
1 1

)'ee 8-6 12o

M_x(llcrrorllL=)

0<t<10

0.0019

5.7585 x 10 -4

1.4909 x 10 -4

0.00196

5.7721 x 10 -4

1.4955 × 10 -4

0.0363

0.0089

0.00222

rate'

1.715

1.94

1.763

1.948

2.028

2.003

The maximal

TABLE 4.4

errors in L2 norm with ¢2 : ,i.

_chem_ h At Max(llcrrorllL_) rate
0<t<10

t 1 0.0014explicit(2, 4) fi-5 40--6

l 1 3.765 x 10 -'1 1.894explicit(2, 4) 4-6 16o0

explicit(2,4) ± 1 9.7748 x 10 -5 1.94580 3200

1 1 0.00139Ty(2, 4) 2-6 40--6

Ty(2, 4) ! 1 3.756 × 10 -4 1.88740 1600

Ty(2, 4) _ 1 9.7579 × 10 -5 1.944
80 6400

]'ee A_ 1__ 0.0095
20 30

]tee 1__ a__ 0.00237 2.003
,10 60

Yee ± _ 5.9442 x 10 -'1 1.9953
80 120

than the ones we get employing the Yee scheme. However, we are using a fourth-order scheme and the loss

of two orders of convergence in the presence of heterogeneous dielectrics is undesirable.

An innovative approach to handle heterogeneous dielectrics for the ]_e scheme is presented in [6]-[7].

We have extended this approach to include heterogeneous piecewise constant dielectric properties in the

explicit(2,4) scheme. As we see below, the hmrth-order convergence is recovered globally. _,Ve divide the

computational domain into three subdomains. Two contain air and the third one contains the lossless

dielectric. Oi1 the interfaces both the electric and magnetic fields are approximated as follows. Suppose the

interfaces are located at i = I1 and i = I2, and e = _2 for/1 < i < 12 while e = e! for i >/2 and i < 11. We

approximate H u at i = I1 and i = I._ by using the following fifth-order extrapolation:

Hn+I/2 _- 31_.._5Hn+1/2 _ __
uq,j 128 YI1--1/2,j

H'+_/2 -- 315H"+1/2 ----
Y_:'J 128 Y_+_/='J

105Hn+1/2
32 yq-a/2,_

1_O05 Hn+l/2

32 y,_+3/2,i

189H,+i/2
-4- -_ Yq-5/2,j -- --

+ 189.;,+11 __
64 =+ / 'j

45H"+1/2 + 35Hn+1/2
32 u,_-r/2,¢ 128 yq-9/2,j

45H'+1/2 + 35H_,+I_22
32 ua+r/=.j 128 a+ / ,J

13



Hn+l/2vq., can be extarpolated by using the points to the left of I1, or by using the points to the right of

I2 because H u is a continuous fimction. Once Hu is approximated on the interface we approximate the

x-derivative of H u using Hu<., and HvI_. , as follows:

OH,,+1� 2 352 35 35 21 5
0_' YII,J _ _6--_oHv,,.j -_ Hu,,+,/_ + _-.-._-Ht,,1+3/2 j 40H_<+5/2._ + -_Hvq+,/z.j

0 H,,+]/2 ,_ 35-9 H 35 H 35 H 21H 5
0--x w=.i 105 v_2J + -_ y,=-_/2 24 w.,-a/2,j + 4-0 _2-5/.-,i 46Hu_=-r/2,J

Since we discretizc the time we want to lose as little information as possible. Therefore, we approximate

O__H,_+1/2 o H,,+1/2 ° H_+1/2 are0, vn,_ where E_ moves more slowly, i.e. where e = e2. Once _ yq_J and , calculated we

EZ "+l EZ "+1 the following way:can evaluate h,j and 12,j

EZn+ 1
I_ ,j ----- EZ_I 'J 24&y':-Xt(Hxn j_a/: _ 27H:rn J-,/_- + 27H_n s+_/2_ H_n _+"/= )•

At ('352Hn+,/2 35 H;,+,+/2 35H,,+,/2 21 g_/?l _ 2 + LHn+l/2 )+_ \10----5 Vl,.i - 8 _ /'J +- 24 vn+a/=.i 40 1+ /=.J $6 un+r/',.j

H.+112 _+lf2Since _ vn., and OH are approximated where e = e._ we set e = e2 at i = I1 and i = I2 °H_+1/2• " Ox Yll ,J

is approximated by using points, which are on the right-hand side of It. This is done because the velocity

of the waves is _ which is smaller than the velocity on the left-hand side of Ii.

In Figures 4.6a-4.6c we draw the error of the three schemes for various mesh sizes with e._ = 2 and in

Fig 4.7a-4.7c we draw the error of the three schemes for various mesh sizes with e2 = 4. In Fig 4.6(t and

4.7d we draw the errors _s a fimetion of the mesh size. The slope of the "_e scheme is 2 and the slope

of the Ty(2,4) scheme and the explicit(2,4) converges to 4 as can also be seen in table 4.5 and table 4.6.

- - - h= 1P20
+1 ..... h.=1/40

-- h=ltSO

.... '.'..-.',,.',;' ,', " _ : " '_, "Jt/ ,'_, ,":'".':.-'.

.-'_ii " ' i , " ,

....f - - - h=lt20

-= ....._ h=I/40

FIG. 4.6A. logm(llerror]IL=) For the Yee scheme. Fro, 4.6_. logxo(llerrorllLa) for the ezplicit(&4)

scheme.
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4S

-7

-75

1
- - - h=-1/20 |

..... I-=-1140 Jh=1/80

._ . *. , r' I -'" _ ." i'_
• "_ J_ s _¸ o l-_ r W'',_ • S" t_'_ I _._._ --

1 _ 3 4 5 • I" e • _o
r_E

Fla. 4.6C. loglo(llerrorllL2) for the Ty(2,4) scheme.

Li
-,_!

Ty(2,4]

expliclt(2,4)

FIG. ,l.6D. Logto(llerrorlIL2) as a function of

Logto(h) For the Yee, the explicit(2,4) and theTy(2,d)
schemes."

The maximal

TABLE 4.5

errors in L2 norm with e2 = 2.

scheme h At

1 1
explicit(2, 4) 2-6 40--6

explicit(2, 4) ]-- ]4{) 1600

1 1
explicit(2, 4) 8-6 3200

Ty(2,4) ±2O 400

Ty(2, 4) 1_ 140 1600

Ty(2, 4) 1__ 1
80 6400

1 l
Y e c 2-5 3-6

1 1
I've 4-6 6-6

1 1

]'ee 8-6 12--5

M. (I )
0<t<10

rate

3.1829 × 10 -4

4.9839 × 10 -6 5.996

2.6518 × 10 -7 4.23

1.978 × 10 -4

2.3593 × 10 -6 6.389

4.4066 x 10 -7 2.420

0.0363

0.0089 2.028

0.00222 2.003

: t...... h=1/40

. . _ h=1/80

,'" "-,/ '¢,I/ ', / -,.", ' _ ,'-,
|
% / r. i, _t ii !i

"rll,l_

FIG. ,I.7A. loglo([Ierrorl]L= ) For the Yee scheme.

-_.sl

_ -61

[,,I
If 41

4Sl

%

1
- - - h=lP'20 _

]..... h:1/40

h=-I/80

I-'_,.,,"''_ _ "_ _ J'_'_.. f" ".% _- .. .._

TIME

FIG. 4.7B. logto(IlerrorNL2) /or the explicit(2,$)

scheme.
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-4 ..... h= 1/40 !J [----

1 = 3 4 s • 7 a 9 lo
TIME

Fie:. 4.7C. lOgao(Jlerror[IL2) for the Ty(2,$) scheme.

-7 a

-- expltclt(2,4) I

_el_(N

FIG. 4.7D. Loglo(I]errorllL2) as a function of

Logm(h ) For the Yee, the explicit(2,4) and the Ty(2,4)

schemes.

TABLE 4.6

The maximal errors in L.2 norm with e'e = 4.

scheme h �At Max(llerror[ILo ) rate

0<t<10

1 6.9239 x 10 -'5expli(_it(2, 4) 2-!6 40-'-6

1 _ 3.5486 x 10 -6 4.286explicit(2, 4) 4-6 16oo

explicit(2, 4) 1__ 1 2.0112 x l0 -7 4.14180 3200

1 l 2.7043 x 10 -5Ty(2, 4) 2-6 40--6
1 1 1.4233 × 10 -6 4.249Ty(2, 4) 4-6 16oo

1 ] 1.1040 x 10 -7 3.688Ty(2, 4) 8-6 6400

x 1 0.0095]'ee 2-6 3-6

l 1 0.00237 2.003"ee 4-6 6-6

1 1 5.9442 x 10 -4 1.9953Yee 8-6 12---6

• 1 with aNext, we look at a coated perfect conductor with a dielectric layer. The coating thickness is 7

relative permittivity of e._ as shown in Fig 4.8.

perl'cct __
conductor

1.

iii_ili_!iiiii!:!i_i:!iiiii!!!ii_:!iii_ii_!ii_i!iiiiii:iii!iiiii;

iiii?!!!!i;!!??iiiiiii!iiiiii_iiiiiiiiiiiii!ii!_ili!iii;iiiiiiiiii;iii!

!_ii!,!!i!_ii!i:???E_'iii!iii!!ii:iiii

!i:i!!!iii!i!:_g_:i2i:!'.!!!gi!gii!{!i:i:i:!!i_!:!;!:i!i_:::::::::::::::::::::::::::::::::::::::::::::

i:;i:ii:iiii;;iiii:i!i_?!iiiii:iiiiiiiii::i[ii?iiiiii:i!_!iiii:i:ilil

FIG. 4.8. The computational domain

perfect
COI_(1LtCIOg
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We take c2 = 2 and el = 1. An exact solution in this case can be:

1 0<]'<1
= sin(a_X) sin(,zt) sin(b]') 0 < X _< _ _ _

l<X<5E: cos(a.zX) sin(.Jt)sin(b]') _ - - 7 0 _< Y _< 1

_-_Xcos(ajX) cos(wt)sin(b}') 0<X< ½ 0<1"< 1
OJ ....

5 0<}'<1Hy -_ cos(a2X) cos(_Jt) sin(b}') ½ < X _< _ _ _

1

= bsin(alX) Cos(_:t)cos(b]-) 0_X _ g 0_< ]'_< 1

l<x<_ 0<}'<1g. b sin(a2X) cos(_zt) cos(b]') _ ....

where

a_ + b2 = e2_ 2

a5 + b"_ = el_ 2

%_ choose:

x=½: sin(_) =cos(2)

x = cos(  ° =0

el=l

_2=2

al _ 37I"

02 ---- 271"

b=Tr

0j: V/'571"

On the interface between the air and the dielectric we use the same techlfique we used in the previous ex-

ample. In Figures 4.9a-4.9c we draw the errors for various mesh sizes. In Figure 4.9d we draw the errors as

a function of the mesh size. For the Yee scheme we get second order accurcy and for the Ty(2,4) and the

explicit(2,4) the accurcy converges to 4, which can also be seen in Table 4.7.

FIG. 4.9A. lOglo(llerrorllL_ ) For the Yes scheme.

,s

k
s

4

I:-
.... , ,, -, ,-, :,, ,', ,-, ,- ,*, ;', ,"1

F_G. 4.9B. log_o(llerrorlb.:) for the explicit(2,4)
scheme.
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L
r-

s

-7

- - - h=I/'_o
h=I140
h.I/80 :f "ry(2.4

*xp_cl_(2,4)

2 _: le 1.7 _ • 1 S 1.4 _3

Fla..I.Oc. log_o(I[errorllL,,) /or the Ty(2,4) scheme. FIG. 4.9D. Log_o(llerror[lL2) as a function of
Logto(h ) For the Yec, the explicit(2,4) and the Ty(2,4)

schemes.

TABLE 4.7

The maximal errors in L2 norm .

scheme h At Max(llerrorIl_)

0<t<10

1 1 0.00398explicit(2, 4) 2--6 40-'-6

1 ] 2.4868 X 10 -4explicit(2, 4) 4-'o 1600

1 1.0889 x 10 -5explicit(2, 4) s-6 3_oo

] 0.0063Ty(2, 4) ._--6 40---5

1 1 1.609 x 10 -4Ty(2, 4) 4--6 _60o

Ty(2,4) 1 1 1.7820 x 10 -680 6400

O. 1498] "e e .--!6 3--6

]'ee 3_ ± 0.037
40 60

]'ee 1__ 1 0.0093
80 120

rate

4.001

4.513

5.308

6.497

2.004

2.0026

To0ur kn0wledge, ttiis is {tie first fourth-order scheme that preserves its convergence rate when discon-

tinuities in the coefficients are present.

Next we consider a monochromatic isotropic point source of wavelength 0.25, that is switched on at

t = 0 and radiates in fl'ee-space. The domain is 0 < x, y < 1. For Yee's scheme we choose h.= ] At-- -- 4-o'--"-- 3'

for the explicit(2'4) and theTy(2,4) scheme h = _, ._t = h2. The point source is modeled by adding a term

representing a current l:(t) = 0.01 sin(8nt)e(t) at (x, y) = (¼, 41-)where e(t) denotes the Heaviside unit-stet)

function. For t}ie pulse under consideration, the radiated field is the solution of

(4.2) O_E.. + O_E: - ayE: = ZOtI:(t)5(r - r_)

r- r s ._- (x - I7, Y - ¼)" The solution consists of rotationaliy symmetric outgoing waves. The exact solution

is

In Fig. 4.10 we plot the errors, in the L2 norm, for the various approximate solutions.
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10_
4

3.5

i s

3 7

2.S

J

|,
=

1.5

o_st

--- y_
...... Ty(2,4)

I _ explicit(2,4) J

, t i

TIME

FIG. 4.10. The errors in L2 norm between the numerical solution and the exact solution of 4.2.

o.I o= o._ o4 05 oe o? o.8 o.9 1 ol ol 0.9 014 O.S oe Q7 ol oi

FIO. 4.11. The contours of the Yee scheme and FIO. 4.12. The contours of the explicit(2,4)

the exact solution at t = 8. The Yee scheme is drawn scheme and the exact solution at t = 8. The ex-

by -- and the exact solution is drawn by a solid line plicit(2,4) scheme is drawn by -- and the exact so-

lution is drawn by a solid line.

Next we consider a monochromatic isotropic point source of wavelength 0.25, that is switched on at t -- 0

in the presence of an infinite perfect conductor( fig 4.13). The domain is -oc < z, y < l_ _ _,-oc _< y_< oc. For

Yee's scheme we choose h = 426 At = 2h, -y-, for the explicit(2,4) and theTy(2,4) schemes h = 1 At = h 2. The

point source is modeled by adding a term representing a current I:(t) = 0.01 sin(87rt)e(t) at (z,y) = (¼, ¼)

where e(t) denotes the Heaviside unit-step function. The equations in this case are:

OE: Z( OHy OH_
0_- = cOx cOy ) - ZI:(t)5(r - rs)

cOH_ 10E:

- cOt Z cOy

cOHu 1 cOEz

cOt Z cOx

With tile boundary conditions:

(4.3) E:(1/2, y, t) = 0
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PERFECT

CONDUCTOR

FIG. 4.13. The computational domain.

The exact solution can be constructed by using the exact solution for the previous case and by using the

image method.

In Figures 4.14, 4.15 and 4.16 we draw the errors in L2 norm and the contours of tile exact and numerical

solutions.

x 10 -_

3

, i___ ]• Ty(2,4)

2.S " explicit (2,4)

2

l,S

.5l
o! 015 _ '

1,5

TIME

FIG. 4.14. The errors in L2 norm between the nfimericaI solutions and thc exact solution of 4.3.
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os

o_

04

o3s

02S

02

ols

ol

O_

o
00_ 01 015 02 o_s 03 0._ 04 o45 o.s

% ............ ', °; o_-_-_'_,

FiG. 4.15. The contours of the Yee scheme and FiG. 4.16. The contours of the explicit(2,4)

the exact solution at t -- 5. The Yee scheme is drawn scheme and the exact solution at t = 5. The ex-

by -- and the exact solution is drawn by a solid line pIieit(2,4) scheme is drawn by -- and the exact so-

lution is drawn by a solid line•

Next we consider a monochromatic pointsource in the presence of an inclined perfect conductor Fig 4.17a

• We test these three schemes by using the staircasing method. We meshure the error in L1 norm along the

dashed line which can be seen in Fig 4.17b . As can be seen from Fig 4.17c tlle Ty(2,4) scheme is unstable

whereas the ]_e scheme and the explicit(2,4) schemes are stable. In [9] the Ty(2,4) scheme was tested as

well but there the Ty(2,4) scheme was stable.

p]EIlF1ECT
4r---_8 CON1)UCTOR

FIG. 4.17A. Computational domain.

Y

1 o6_

i t

o.as[

:os :t 2m :_2 a_s 2a Z:l_ za _4S as x

FIG. 4.17B. Location of the grid points.

o.1

i [ --- v--e_,,o,t(2..,)o_ "ry(2,4)

OO7
!

.... :-.."
i

o_ y

oon _ool

% o • 1 1.s 2 =s a a. 4
TJ_

FIG. 4.17C. The IlerrorIlL] as a function of time for the Yee, the ezplicit(2,4) and theTy(2,4) schemes.
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Next we test these three schemes in [0, 1/2] x [0, 1/4] x [01/2] domain. An exact solution in this case

can be [8]:

H_, = sin(_t)

Hy = sin(_t)

H: = sin(a,,t)

C-B

to

A-C
E.--

to

B-A
Ez-

a)

sin(A.r + By + Cz)

sin(Ax + By + Cz)

sin(.4x + By + Cz)

co@zt) cos(Ax + By + Cz)

cos(_'t) cos(Ax + By + Cz)

cos(tot) cos(Ax + By + Cz)

Where

w 2 =.42+B_-+C 2

0 = A+B+C

We choose:

.4 =71"

B = -2rr

C=71"

to--- V/67r

In table 4.8, we can see that for the explicit(2,4) and the Ty(2,4) schemes we have used At = h 2 and for

the _e scheme we have used At = -_. The explicit(2,4) as well as the Ty(2,4) schemes behave better than

expected and gives ahnost fifth order of accuracy.

For all this cases we have measured the error between the approximated electric field in the z direction

and the exact electric field in the z direction in L2 norm.

TABLE 4.8

Comparison of the errors in L_ norm

scheme h At Max(]lerror][L2) rate

0<t<10

l 1 5.375 x 10 -4explicit(2, 4) 2-d 40--6

1 l 2.184 x 10 -5 4.621explicit(2, 4) 4--6 1600

1 t 9.071 x 10 -T 4.590explicit(2, 4) s-6 32oo

1 1 3.621 x 10 .4Ty(2, 4) 2-6 40-6

1 1 1.144 X 10 -5 4.983Ty(2, 4) 4--'0 1600

l 1 3.5621 x 10 -7 5.005Ty(2, 4) 8--6 6400

l'ee _ 1 0.0027
20 35

1 1 7.3 x 10 .4 1.9028]'ee 4-6 7-6

1 1 1.8252 x 10 .4 2.0015I'ee s--d 14-6
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FIe,. 4.18.a. log_o(llerrorlJaz ) for the Yee scheme. Fro. 4.18_. logto(lierror[lL:) for the ex-

plicit(2,4) scheme.
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-3s

_r-_

-5,5

4s
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--- h=l_O]
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1 2 3 ,l 5 • -7- | | -- 1o

TIME

-1 S,

_ Yee
-2}- Ty(2,4)

explicit(2,4)

-_sP

[=f .....

-19 -I 8 -1 ? -1 .(i -1 .,5 -14 -1 ,$ -1,2

_g,oP,)

FIG. 4.18C. logm(ilerrorllL_) for the Ty(e,4) FIG. 4.1SD. Lo9zo(IJerrorl]Lz) as a function

scheme, of Log_o(h ) For the Yee, the ezplieit(_,4) and the

Ty(_,,l) schemes.

5. Computational Cost Comparisons• In order to compare the efficiency of the explicit(2,4), the

Ty(2,4) and Yee scheme we examine the following boundary conditions:

E: = sin(3_x) sin(47ry)

5_rAt

Ha = (3/5) cos(3_-x) sin(4_ry) sin(-_--)

Ux = - (4/5) sin (37rx) cos (4Try) sin ( 52_-----_t--)

The exact solution in this case is:

E: = sin(37rx) sin(4rry) eos(57rt)

For the Ty(2,4) scheme and the explicit(2,4) scheme we use a uniform gridspacing with _:r = Ay = 3--!6. For

the Yee scimme we also use uniform gridspacing with Ax = Ay = ._0" We chose these mesh sizes in order

to get the same error between the exact E: and the approximated E: in L_ norm. The comparison is shown

in table 5.1. Tim programs were written in fortran and run on a Digital Alpha workstation.

The CPU time needed to achieve the same accuracy in _'_e's case is more than ll times larger than

required for the Ty(2,4) scheme and 91 times larger than required for the explicit(2,4) scheme.
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TABLE 5.1

CPU-time using various difference schemes.

schcmc h Max(llcrrorllL.)
O<t<lO

1 1 1.99 x 10 -3explicit(2, 4) 3--6 90---5

l 1 1.25 x !0 -3Ty(2, 4) 5-5 90-"5

Yee 1--!- _ 1.31 x 10 .3
24O 360

CPU - time

0.9 sec

5.7 see

91sec

6. Discussion and Conclusion. Tile results demonstrate that we can use a coarser mesh with tile

fourth order scheme and still get the same accuracy as with the $_e schenm. This is true even in the presence

of a dielectric media.

Although this scheme is not as good as the Ty(2,4) scheme[2], it is still easier to modify an existing code

based on the Yee scheme and make it fourth order accurate, by using the explicit(2,4) scheme. This is true

because in the Ty(2,4) scheme one has to inverse a matrix by using a LU decomposition.
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